Telegram Group & Telegram Channel
В чём разница между жёстким и мягким голосованием в ансамблях?

▪️ Жёсткое голосование называют ещё голосованием большинством. В этом случае общее предсказание ансамблем метки класса, например, выбирается по принципу «большинство классификаторов предсказали эту метку».

Например, если прогноз для определённой выборки такой:

- классификатор 1 -> класс 1
- классификатор 2 -> класс 1
- классификатор 3 -> класс 2

То ансамблевый классификатор определит объект как «класс 1».

Жёсткое голосование часто используется, когда все классификаторы считаются равноценными.

▪️В мягком голосовании общее предсказание ансамблем метки класса определяется через argmax суммы всех предсказанных вероятностей. Каждому классификатору можно присвоить определённые веса с помощью weights параметра. Когда веса предоставлены, прогнозируемые вероятности классов для каждого классификатора собираются, умножаются на вес классификатора и усредняются. Выбирается метка класса, у которой самая высокая средняя вероятность.

#junior
#middle



tg-me.com/ds_interview_lib/163
Create:
Last Update:

В чём разница между жёстким и мягким голосованием в ансамблях?

▪️ Жёсткое голосование называют ещё голосованием большинством. В этом случае общее предсказание ансамблем метки класса, например, выбирается по принципу «большинство классификаторов предсказали эту метку».

Например, если прогноз для определённой выборки такой:

- классификатор 1 -> класс 1
- классификатор 2 -> класс 1
- классификатор 3 -> класс 2

То ансамблевый классификатор определит объект как «класс 1».

Жёсткое голосование часто используется, когда все классификаторы считаются равноценными.

▪️В мягком голосовании общее предсказание ансамблем метки класса определяется через argmax суммы всех предсказанных вероятностей. Каждому классификатору можно присвоить определённые веса с помощью weights параметра. Когда веса предоставлены, прогнозируемые вероятности классов для каждого классификатора собираются, умножаются на вес классификатора и усредняются. Выбирается метка класса, у которой самая высокая средняя вероятность.

#junior
#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/163

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA